Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            We develop an open-access database that provides a large array of datasets specialized for magnetic compounds as well as magnetic clusters. Our focus is on rare-earth-free magnets. Available datasets include (i) crystallography, (ii) thermodynamic properties, such as the formation energy, and (iii) magnetic properties that are essential for magnetic-material design. Our database features a large number of stable and metastable structures discovered through our adaptive genetic algorithm (AGA) searches. Many of these AGA structures have better magnetic properties when compared to those of the existing rare-earth-free magnets and the theoretical structures in other databases. Our database places particular emphasis on site-specific magnetic data, which are obtained by high-throughput first-principles calculations. Such site-resolved data are indispensable for machine-learning modeling. We illustrate how our data-intensive methods promote efficiency of the experimental discovery of new magnetic materials. Our database provides massive datasets that will facilitate an efficient computational screening, machine-learning-assisted design, and the experimental fabrication of new promising magnets.more » « less
- 
            We present details on a new measurement of the muon magnetic anomaly, . The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses polarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value of is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure (0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is (0.19 ppm). Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
